TEL:400-0033-603
销售热线:
总经理投诉电话:18009693519
首次实现对“笼目”超导体AV₃Sb₅笼目层的化学掺杂
目前,对笼目结构超导体AV₃Sb₅ 的超导态与CDW等竞争电子态之间复杂的演生现象及其物理机制尚存争议。仅对常压下的纯相AV₃Sb₅ 进行研究,无法提高其超导转变温度,也很难获得其超导电性随载流子浓度、电子能带结构、磁有序和电荷序等关键因素的系统演化规律。为研究AV₃Sb₅ 超导电性在这种复杂的电子环境中的行为特征及其与共存有序态的关联,探究非常规超导起源,研究者最先利用高压这一便捷的手段去有效缩短CsV₃Sb₅ 晶格的原子间距,通过键长、键角等晶格结构参数的变化调控各种序参量。对压力变化的超导转变温度、CDW态的演化进行了研究,发现压力单调抑制CsV₃Sb₅的CDW,而CsV₃Sb₅超导转变温度Tc呈现出M形的非单调双拱形演化行为(Phys. Rev. Lett. 126, 247001 (2021);Nature Commun. 12, 3645 (2021)),主要归结于加压引起电子结构沿c轴的色散或者公度的CDW态转变为近公度CDW态,但微观演化机制仍不明晰。在不显著改变晶体参数的条件下,另外一个研究超导机制和关联电子态演化的有效手段是进行化学掺杂精细调控载流子浓度,特别是对kagome层的V原子和近邻kagome层的 Sb 原子的元素替代,有望揭示过渡金属元素的电荷序、自旋序、轨道序对平带、范霍夫奇异点等特殊电子结构,进而对超导、CDW、PDW、电子向列相等关联电子态的影响规律。由于对化学掺杂元素的原子半径、价态、掺杂量的精确调控具有高的要求,通过化学掺杂实现对kagome层结构及其关联电子态的调制研究尚未见报道。
图2. CsV3-xTixSb5 单晶的超导、CDW、AHE和AMR随Ti掺杂比例的演化。
为了揭示化学掺杂引起的超导、CDW等电子关联态的演化机制,他们与中科院物理所的周兴江研究员、美国波士顿学院的Ziqiang Wang(汪自强)教授和以色列科学研究所的Binhai Yan(颜炳海)教授等合作,利用角分辨光电子能谱与密度泛函理论计算等对不同掺杂比例的CsV3-xTixSb5单晶进行了系统研究,发现纯相CsV₃Sb₅在Γ点费米面以下存在一些由2a₀ ×2a₀长程CDW在M点的能带折叠产生的电子能带,轻微掺杂即导致这些能带消失。随着掺杂比率的增加,整个费米面向上偏移,到x=0.27时产生了100 meV的偏移,表明Ti掺杂产生了hole doping效应并能有效调节费米能级。进一步发现M点的范霍夫奇异点在Ti掺杂后向上偏移并越过费米能级,因此在M点附近的电子散射被抑制,结果导致CDW、AHE、AMR和电子向列相等关联电子态的抑制以及新超导相的出现。此外,他们进一步实现了其它过渡金属原子(Cr、Nb等)对kagome层V原子的替代,发现不同元素掺杂对CsV₃Sb₅体系的超导转变温度、超导能隙具有不同的调制作用,有助于全面深入揭示kagome层在笼目结构超导体中的关键作用。
相关研究结果发表于Science Bulletin 67, 2176 (2022) 。该工作于2021年10月21日公开在ArXiv预印平台网站上(arXiv:2110.11228),同日美国UC Santa Barbara大学的Stephen Wilson课题组公开了在CsV₃Sb₅非kagome层进行Sn掺杂的研究工作(arXiv:2110.10912, 后发表于Phys. Rev. Mater., 6, L041801 (2022))。该研究工作不仅首次实现了对笼目结构超导体AV₃Sb₅体系的化学掺杂,也是首次报道了笼目结构超导体CsV₃Sb₅中超导、CDW等多种竞争序随化学掺杂的演化相图,对研究配对密度波、电荷密度波、电子向列相的形成机制以及揭示多种相互交缠电子态和非常规超导机制的关联作用具有重大意义。
该工作得到了科技部 (2018YFA0305800 and 2019YFA0308500), 国家自然科学基金委 (61888102, 52022105, 51771224, 11888101, 12061131005和11834016) 和中国科学院 (ZDBS-SSW-WHC001, XDB33030100, XDB28010200和XDB30010000) 的支持。
转载自“中科院物理所”公众号
文章信息
Yang H, Huang Z, Zhang Y, et al. Titanium doped kagome superconductor CsV3−xTixSb5 and two distinct phases. Science Bulletin, 2022, 67(21): 2176-2185,